Fees and Registration:
The fee for the Birmingham Ventilation program is $1,095.00 (3 days), the fee for the Las Vegas Ventilation program (4 days) is $1,395.00, and for the Mixing of Air Streams course is $795.00 U.S. Registrations must be made in advance and all fees are due by program start date. The fee includes all course materials and breaks and lunch each day. The fee does not include travel and lodging. Cancellations must be received two weeks prior to the program start date to receive a refund (less processing and credit card fees). Cancellations must be in writing or e-mail. Substitutions are accepted at any time. In the event of program cancellation, all registration fees will be refunded. We cannot be held responsible for costs incurred other than the registration fees.

Enrollment will be limited at some locations; therefore, early registration is advised. To register, call (520) 548-8446 or complete the enrollment form and mail it to:
On-line registrations can be made at:
www.ventconference.com
Click on “online registration”

If you have 5 or more people to attend either location or course call R.D. Eckhoff (520) 548-8446 for discounted fee.

Registration Form: Industrial Ventilation Conference / Training Programs

Name ____________________________
Affiliation ____________________________
Address ______________________________
City __________________ State ______ Zip ______ Country ______
Phone __________ Fax __________ Email __________

Registration Fees
□ Birmingham Industrial Ventilation Training – Level I System Design
 October 12-14, 2015 $1,095.00
□ Birmingham Industrial Ventilation Training – Level II Non Standard Air
 October 12-14, 2015 $1,095.00
□ Las Vegas Industrial Ventilation Training – Level I System Design (4 days)
 December 7-10, 2015 $1,395.00
□ Las Vegas Industrial Ventilation Training – Level II System Design (4 days)
 December 7-10, 2015 $1,395.00
□ Combining & Mixing of Process Airstreams – Las Vegas (2 days)
 November 16-17, 2015 $795.00
Total Enclosed $ __________

If you wish to use your VISA, MASTERCARD or AMERICAN EXPRESS
for registration:
Card Number __________ Exp. __________
Signature ___________________ Security Code __________
Date __________

Mail this form with payment to:
Abbott Associates Inc
Industrial Ventilation Training
500 Providence Square
Greenville SC 29615
Or
Fax this form with payment to: 815-642-9237

For Conference information you can call: 520-548-8446

Email: rdeckhoff@gmail.com
On-line registration: www.ventconference.com

Note: Registration fees are not a tax-deductible contribution. However, they may be a business expense. Consult with your accountant or tax advisor.

Credits:
These courses can be submitted for engineering PDH credits. The American Board of Industrial Hygiene has previously awarded 2.1 Industrial Hygiene CM points to Certified Industrial Hygienists who complete the Industrial Ventilation Training and submit to ABIH.

Location:
Birmingham, Alabama – Hyatt Regency Birmingham-Wynfrey Hotel, 1000 Riverchase Galleria. Program check-in will be from 7:30 to 8:00 A.M. on the first day of the program. Sleeping room arrangements can be made at https://resweb.passkey.com/go/OIV5 or 1.800.233.1234. (When making sleeping room reservations by phone mention Group Code OIV5 and Industrial Ventilation Conference and give dates to get the conference rate). The conference has negotiated a special room rate of $66.00 single or double for attendees of this program. Reservations must be made by October 15, 2015.

Las Vegas Nevada – These programs will be held at the Monte Carlo Resort Hotel. Sleeping room arrangements:
Air Mixing – November 16-17, 2015. On-line at https://resweb.passkey.com/go/XAIRSTRM or call 800-311-8999 (When making sleeping room reservations by phone mention Group Code XAIRSTRM and Combining & Mixing Airstreams and give dates to get the conference rate). The conference has negotiated a special room rate of $44.00 single or double for attendees of this program. Reservations must be made by November 6, 2015.

Industrial Ventilation – December 7-10, 2015. On-line at https://resweb.passkey.com/go/XIVTRAIN or call 800-311-8999 (When making sleeping room reservations by phone mention Group Code XIVTRAIN and Industrial Ventilation Training and give dates to get the conference rate). The conference has negotiated a special room rate of $44.00 single or double for attendees of this program. Reservations must be made by November 6, 2015.

For Conference information you can call: 520-548-8446
For billing information you can call: 864-297-9598

37th Annual Industrial Ventilation Conference Training
October 12 – 14, 2015 – Birmingham, Alabama
December 7-10, 2015 – Las Vegas, Nevada
Combining and Mixing of Process Air Streams
November 16-17, 2015 – Las Vegas, Nevada

Co-Sponsored by

For Conference information you can call: 520-548-8446
Industrial Ventilation Conference / Training

October 12 – 14, 2015 in Birmingham, Alabama and December 7-10, 2015 in Las Vegas, Nevada

Program Overview
The purpose of this training program is to teach effective and economical industrial ventilation practices and design techniques through the application of established principles. Ventilation systems provide the desired control over the in-plant environment and when they are properly planned, designed and maintained, will operate within the constraints of air pollution emission control and energy limits. This training program will present the principals of airflow, how to control airborne contaminants and how to properly design and test systems. There will be both lectures and hands-on problem sessions that will take you step by step through the design of various systems. You will learn to select appropriate exhaust devices and hoods, determine air volume and minimum duct velocity, how to size duct, the calculation of system pressure losses, the selection of fans, air cleaning devices and other ventilation topics. This course will help you understand, design and maintain efficient, effective and economical industrial exhaust ventilation systems. Each attendees will receive a copy of Industrial Ventilation – A Manual of Recommended Practice published by American Conference of Governmental & Industrial Hygienists (ACGIH).

Who Should Attend
This course is intended for plant engineers, industrial hygienists, sales engineers, sheet metal contractors, plant and operations managers, safety engineers, mine engineers, regulators, inspectors, insurance investigators, risk managers and anyone involved in ventilation system design, maintenance and performance.

Benefits of Attending
• Provide a safe and healthy working environment
• Protect workers breathing zone
• Save thousands of dollars with proper system design
• Reduce liability and risk
• Reduce energy costs
• Improve product and workplace quality

Course Schedule:

Monday, 8:00 a.m. to 5:00 p.m.
7:30 a.m. – 8:00 a.m. Registration
8:00 a.m. Opening Session / Welcoming Remarks / Plan of Instruction
8:30 a.m. Principals of Air Flow
9:30 a.m. Break
9:45 a.m. Hood Design
10:45 a.m. Classroom Problems
12:00 noon Lunch
1:00 p.m. Classroom Problems
2:30 p.m. Duct Design
2:45 p.m. Classroom Problems
3:30 – 5:00 p.m.

Tuesday, 8:00 a.m. to 5:00 p.m.
8:00 a.m. Classroom Problems
9:30 a.m. Break
9:45 a.m. Fan Selection & System Effects
11:30 a.m. Classroom Problems
12:00 noon Lunch
1:00 p.m. Classroom Problems
2:30 p.m. Duct Collector Selection
2:45 p.m. Classroom Problems
3:45 – 5:00 p.m.

Wednesday, 8:00 a.m. to 5:00 p.m.
8:00 a.m. Classroom Problems
9:30 a.m. Break
9:45 a.m. Fan Sound
10:45 a.m. Classroom Problems
12:00 noon Lunch
1:00 p.m. Classroom Problems
2:15 p.m. Break
2:30 – 4:00 p.m. Classroom Problems/Evaluations

Thursday, 8:00 a.m. to 12:00 p.m. (Las Vegas Only)
System Air Flow Testing

Problem Sessions
You can attend either the Level I or Level II problem sessions at the Birmingham or Las Vegas programs. The problem sessions begin with standard ventilation design concepts and progress to the development of complete systems. The problems are sequenced to allow you to develop the necessary skills to design complete ventilation systems. All problem sets and calculation sheets will be provided. We ask that you bring a calculator with scientific functions to aid in working the classroom problems.

Level I – Ventilation System Design
The problems will emphasize fundamentals of air flow in systems and will include selection of exhaust hoods, determination of air volume and maximum duct velocity, sizing of ducts, calculation of system pressure losses and selection of fans and air cleaning devices.

Level II – Non-Standard Air
The problems will deal with exhaust systems that involve elevated air temperature and/or moisture where the density may vary significantly from standard conditions. Air volume and pressure calculation will be made using psychrometric charts in order to determine duct sizes, fan characteristics and adequate motor horsepower. Before attending this problem session it is recommended that you have attended the Level I – Ventilation System Design session in this or another ventilation training program.

System Airflow Testing
This workshop presents guidelines on how to measure and calculate airflow readings using both pitot tube traverse and hood static pressure methods, combined with a hands-on session where the attendees will perform pitot tube traverses and take hood static pressures and then convert the readings into system airflow values.

Program Overview
The purpose of this training program is to teach effective and economical industrial ventilation practices and design techniques through the application of established principles. Ventilation systems provide the desired control over the in-plant environment and when they are properly planned, designed and maintained, will operate within the constraints of air pollution emission control and energy limits. This training program will present the principals of airflow, how to control airborne contaminants and how to properly design and test systems. There will be both lectures and hands-on problem sessions that will take you step by step through the design of various systems. You will learn to select appropriate exhaust devices and hoods, determine air volume and minimum duct velocity, how to size duct, the calculation of system pressure losses, the selection of fans, air cleaning devices and other ventilation topics. This course will help you understand, design and maintain efficient, effective and economical industrial exhaust ventilation systems. Each attendees will receive a copy of Industrial Ventilation – A Manual of Recommended Practice published by American Conference of Governmental & Industrial Hygienists (ACGIH).

Who Should Attend
This course is intended for plant engineers, industrial hygienists, sales engineers, sheet metal contractors, plant and operations managers, safety engineers, mine engineers, regulators, inspectors, insurance investigators, risk managers and anyone involved in ventilation system design, maintenance and performance.

Benefits of Attending
• Provide a safe and healthy working environment
• Protect workers breathing zone
• Save thousands of dollars with proper system design
• Reduce liability and risk
• Reduce energy costs
• Improve product and workplace quality

Course Schedule:

Monday, 8:00 a.m. to 5:00 p.m.
7:30 a.m. – 8:00 a.m. Registration
8:00 a.m. Opening Session / Welcoming Remarks / Plan of Instruction
8:30 a.m. Principals of Air Flow
9:30 a.m. Break
9:45 a.m. Hood Design
10:45 a.m. Classroom Problems
12:00 noon Lunch
1:00 p.m. Classroom Problems
2:30 p.m. Duct Design
2:45 p.m. Classroom Problems
3:30 – 5:00 p.m.

Tuesday, 8:00 a.m. to 5:00 p.m.
8:00 a.m. Classroom Problems
9:30 a.m. Break
9:45 a.m. Fan Selection & System Effects
11:30 a.m. Classroom Problems
12:00 noon Lunch
1:00 p.m. Classroom Problems
2:30 p.m. Duct Collector Selection
2:45 p.m. Classroom Problems
3:45 – 5:00 p.m.

Wednesday, 8:00 a.m. to 5:00 p.m.
8:00 a.m. Classroom Problems
9:30 a.m. Break
9:45 a.m. Fan Sound
10:45 a.m. Classroom Problems
12:00 noon Lunch
1:00 p.m. Classroom Problems
2:15 p.m. Break
2:30 – 4:00 p.m. Classroom Problems/Evaluations

Thursday, 8:00 a.m. to 12:00 p.m. (Las Vegas Only)
System Air Flow Testing

Problem Sessions
You can attend either the Level I or Level II problem sessions at the Birmingham or Las Vegas programs. The problem sessions begin with standard ventilation design concepts and progress to the development of complete systems. The problems are sequenced to allow you to develop the necessary skills to design complete ventilation systems. All problem sets and calculation sheets will be provided. We ask that you bring a calculator with scientific functions to aid in working the classroom problems.

Level I – Ventilation System Design
The problems will emphasize fundamentals of air flow in systems and will include selection of exhaust hoods, determination of air volume and maximum duct velocity, sizing of ducts, calculation of system pressure losses and selection of fans and air cleaning devices.

Level II – Non-Standard Air
The problems will deal with exhaust systems that involve elevated air temperature and/or moisture where the density may vary significantly from standard conditions. Air volume and pressure calculation will be made using psychrometric charts in order to determine duct sizes, fan characteristics and adequate motor horsepower. Before attending this problem session it is recommended that you have attended the Level I – Ventilation System Design session in this or another ventilation training program.

System Airflow Testing
This workshop presents guidelines on how to measure and calculate airflow readings using both pitot tube traverse and hood static pressure methods, combined with a hands-on session where the attendees will perform pitot tube traverses and take hood static pressures and then convert the readings into system airflow values.

Combining and Mixing of Process Airstreams
November 16-17, 2015 Las Vegas, NV

This program is intended to help attendees understand how to combine and then mix airstreams having different temperature, elevation, pressure and moisture levels and characteristics. This is not an Industrial Ventilation Design program, but focuses on helping the attendees understand how to perform the calculations for combining and mixing process airstreams for new or modified process conditions or to troubleshoot airstreams in existing processes.

Combining Airstreams: These problem sets will include using density factors to make corrections for temperature, elevation and pressure for combining cold airstreams with hot, dry airstreams, and will also include the use of the density factor for moisture and psychometric charts for combining cold airstreams with hot, moisture laden airstreams. The airstream basis will be air; gases will not be addressed in these problem sets. Key objectives will be to allow the attendees to combine airstreams based on either a target end temperature or dew point for process control.

This program is intended to help attendees understand how to combine and then mix airstreams having different temperature, elevation, pressure and moisture levels and characteristics. This is not an Industrial Ventilation Design program, but focuses on helping the attendees understand how to perform the calculations for combining and mixing process airstreams for new or modified process conditions or to troubleshoot airstreams in existing processes.

Combining Airstreams: These problem sets will include using density factors to make corrections for temperature, elevation and pressure for combining cold airstreams with hot, dry airstreams, and will also include the use of the density factor for moisture and psychometric charts for combining cold airstreams with hot, moisture laden airstreams. The airstream basis will be air; gases will not be addressed in these problem sets. Key objectives will be to allow the attendees to combine airstreams based on either a target end temperature or dew point for process control.

Mixing Airstreams: These problem sets will look at systems with non-complete mixing. Mixing effectiveness will be used to determine the increase in uniformity that can be expected when the systems in question do not have the required distance or geometry for the gas streams to mix perfectly. Strategies and best practices for using mixing elements will be discussed. Topics will include calculating the required distance downstream of a mixing element to achieve specified uniformity, determining pressure drop through mixers and uniform mixing for stack testing.

8:30 a.m. to 4:30 p.m. each day.
12:00 noon Lunch
Las Vegas NV, Monte Carlo Resort Hotel

Visit our website at www.ventconference.com